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HYDROGEN EMBRITTLEMENT OF STEELS* 

By 

Jack T. Brown** and Willi&m M. Baldwin, Jr.*** 

ABSTRACT 

The effect of hydrogen on the ductility, £ , of SAE 1020 steel 
at strain rates, i , from 0.05 inches per inch per minute to 
19,000 inches per inch per minute and at temperature, T, from 
+150°F to -320°F was determined.    The ductility surface of the 
embrittled steel reveals two domains:   one in which 

I 

i 

i 
The usual ''explanation" of hydrogen embrittlement are in accord 
with the first of these domains only. 

  

*       This paper is based upon a portion of a research program 
conducted in the Metals Research Laboratory, .Case Institute 
of Technology in cooperation with the Office of Naval Research. 
The data were used as the basis of a thesis submitted to Case 
Institute of Technology by Mr. Brown in partial fulfillment for 
the degree of Master of Science. 

**    Formerly graduate-student, Case Institute of Technology, now 
at Westinghouse Research Laboratories, Pittsburgh, Pennsylvania 

*** Research Professor, Metals Research Laboratory, Case Institute 
of Technology, Cleveland, Ohio. 
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INTRODUCTION 

• fc The purpose of this investigation was a fuller characterization of the 

effects of varying temperature and strain rate on the fracture strain of 

hydrogen charged steel. 

To be sure, it is known that low and high temperature remove the 

embrittlement that hydrogen confers upon steels at room temperature (2) 

(10)( 11)(12)*, see Fig. la and b, and that high strain rates have a similar 

effect (3)(4)(6)vl2), see Figs. 2a, b, and c.   However, the general effect of 

these two testing conditions on the fracture ductility of hydrogen-charged 

steels is not known, i.e., the three-dimensional graphical representation of 

fracture ductility as a function of temperature and strain rate is not known 

-- only two traverses of the graph are available.   The need for such a graph 

is not pedantic.   To demonstrate this point, Figs. 3a, b and c show three of 

many three-dimensional graphs, all possible on the basis of the two traverses 

• 

at hand.   The important point (as will be developed in the Discussion) is that 

each of them would indicate a different basic mechanism for hydrogen embrittle- 

ment. 

It will be noted that the four types of ductility surfaces in Figs. 3a, b, and c 

may be characterised as follows: 

T 

*k\ at 

Type "a":     J£ )    > O, J7'L<-° 

Type"c" 8u°.        *>^° T 

T 

*   Numbers in parentheses pertain to references at the end of the paper. 

i 

i 
Type «d"     <* ) ^ x 
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MATERIAL AND PROCEDURE 

Tensile tests were made at various temperatures and strain rates on a 

commercial grade of 3/4" round SAE 1020 steel in both a virgin state and as 

charged with hydrogen.    The steel was spheroidized at 1250°F for 168 hours 

to give the unembrittled steel the lowest possible transition temperature. 

The steel was cathodic&lly charged with hydrogen as follows:   The specimen 

was attached to a six inch steel wire, degreased for five minutes in trichlore- 

thylene, rinsed with water and fixed in a plastic top in the center of a cylindrical 

platinum mesh anode.   The assembly was placed in a 1000 milliliter beaker 

containing an electrolyte of 900 milliliters of four per cent sulphuric acid and 

10 milliliters    of     poison (2 grams of yellow phosphorous dissolved in 40 

milliliters of carbon disulphide).   A current density of one ampere per square 

inch was used which developed a four volt drop across the two electrodes.   All I 
• 

electrolysis wan carried on at room temperature. 
- *   * 

Temperatures for tensile tests were obtained by immersing the specimens 

in baths of water (-r»70°F to +150°F), mixtures of liquid nitrogen and isopentane 
i 

(+?0°F to -240°F), and boiling nitrogen (-240°F to -320°F). 

Specimens were tested in tension at strain rates of 0.05, 10, 100, 5000, 

19000 inches per inch per minute.   The 0.05 and 10 inches per inch per minute 

•train rates were obtained on a 10,000 pound Riehle Tensile Testing machine, 

the 100 inches per inch per minute rate on a hydraulic type draw bench with a 

special fixture, and the 500 and 19000 inches per inch per minute rates on a 

drop hammer. 

The fracture ductilitv of hydrogen-charged steel at room temperature and 

normal testing strain rates (^\>0.05 inches per inch per minute) is a function of 

- 2 - 
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electrolysing time, dropping to a value that remains constant after a critical 

time (6)*.   Under the conditions of this research the saturated loss in ductility 

occurred at approximately 30 minutes, see Fig. 4 and a sixty minute charging 

time was taken as standard for all subsequent tests. 

After charging the steel with hydrogen, the surface was covered with 

blisters.    These have been described by Seabrook, Grant and Carney (6).    The 

original diameter of the specimen was not reduced by acid attack, even after 

ninety-one hours. 

RESULTS 

The ductility of both uncharged and charged specimens is given as a function 

of strain rate in Fig. 5, and as a function of temperature at four different strain 

rates in Fig. 6.    These results are assembled into a three-dimensional graph in 

Fig. 7.   It is seen that the locus of the minima in the ductility curves of the 

charged steels divides the ductility surface into two domains.   At temperatures 

below the minima, 

J|).<0   .nd     ^)T>0 

(cf. for example, lines i and ii in Fig. 7); at temperatures above the minima 

$L )  ;>0   and   ^ )  >0 

(cf. for example, lines iii and iv in Fig. 7).   These domains correspond to surfaces 

of types "a" and "d" respectively and the assembly corresponds to the prototype 

given in Fig. 3c. 

*  The hydrogen content of the steel continues to increase with charging time 
even after the ductility lias leveled off to its saturated value (6). 

- 3 - 
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DISCUSSION 

Of the two types of ductility surfaces which characterize hydrogen embrittle- 

ment only the type "a" surface has been rationalized.    Zapffe and Sims (9) and 

Zapffe (11) picture hydrogen embrittlement to result from the precipitation of 

hydrogen in "substructure disjunctions" or "voids" at pressures sufficient to 

force the metal assunder.   Straining is presumed to enlarge the imperfections 

reducing the hydrogen pressure.   Further precipitation of hydrogen is required 

to maintain or develop a disruptive pressure.   With these premises, Zapffe 

proceeds to two conclusions: 

"If the rate of strain is increased until the rate of decrease 
i 

in i^H? exce*ds tne rate 0f restoration through further precipitation of H, the 

apparent embrittlement should decrease".   This prediction states that 

"The effect of temperature has an obviously similar relationship since the 

pressure of a gas phase likewise decreases with decreasing temperature.   Thus 

there will be a critical temperature, also a critical rate of cooling, for any given 

set of conditions, such that the critical embrittlement pressure Pj{? is decreased 

more rapidly than it is replenished by precipitating H, and embrittlement is 

observed to decrease".   This statesthat 
< 

These two conditions are those characterizing a ductility surface of type "a". 

Petch and Stables (4) extend 0rowan's rationalization of the delayed fracture 

of glass to the case of hydrogen embrittlement.   They point out that if hydrogen 

gas is adsorbed on the internal surface of microcracks, the critical stress for 



f 

extension of the crack in the Griffith relationship is lowered.   "The extension 

of a crack under stress will take place in steps which occur when hydrogen 

solute atoms arrive at its edge in the course of diffusion".   Since the proposed 

embrittling mechanism is diffusion-controlled, the authors point out that at 

high strain rates the metal should be ductile and adduced the data of Fig. 2c 

to support their conclusion.   Again, this mechanism requires that 

di   T 

Although the authors made no statement regarding the effects of temperature 

it follows that if the arrival of the hydrogen to the microcracks is diffusion 

controlled, and since the diffusion rate decreases with decreasing temperature, 

then decreasing the test temperature at constant strain rate should increase the 

ductility, i.e., 

It is seen that the mechanism proposed by Petch and Stables, like Zapffe 
i 

and Sims, corresponds to a ductility surface of type "a". 

- 
Both these mechanisms are variation! on a theme:   hydrogen embrittlement 

is presumed to depend upon the competition of two rates, the one being the rate 

of straining of the metal, the second being the rate of the embrittling controlling 

process (diffusion or precipitation) the latter rate being presumed to increase 

with increasing temperature.   If the first rate predominates the metal is ductile, 

if the latter predominates the metal is brittle. 

Surfaces of types b, c, and d can be rationalised by extension of the competitive 

rate hypothesis.   If competition exists between the rate of straining and the rate of 

some process which renders the metal ductile the latter rate being presumed to 

„   e. 

i 

H 



increase with increasing temperature, a surface of type "b" will result.   The 

behavior of an overaging alloy on deformation illustrates this situation.   Here 

overaging is a process that renders the alloy mere ductile; its rate increases 

with increasing temperature.    The ductility of such alloys as a function of 

strain rate and temperature yields a surface of type "b" (cf., for example. 

Fig. 10 of Ref. (13). 

At constant strain rate, the ductility increases with increasing temperature 

because the rate of overaging increases with increasing temperature.   At con- 

stant temperature, the ductility decreases with increasing strain rate, since 

the benign effect of the overaging process is outstripped. 

Another example is the case of a hydrogen-charged steel in the process of 

degassing, since the degassification is a process rendering the metal ductile 

and its rate increases with increasing temperature (5)(6)(7)(9)( 10).   The increase 

in ductility of charged steel at temperatures above the minimum in Fig. la has 

been attributed to degassing (2), but such an explanation should not be indis- 

criminately put forward for such curves.   The data in the present research 

represent a case in point, for the increase in ductility at temperatures above the 

minimum in Fig. 6, form a "d" surface and not the "b" surface that would be 

required, if degassing were the real explanation*. 

If one wishes to extend the competitive rate hypothesis to describe surfaces 

of type "c" and "d" one must change the nature of temperature-sensitive process 

* The authors have no doubt that degassing is a factor in the hydrogen embrittle- 
ment of steels and suggest that a full characterization of the ductility surface 
of a charged steel would involve three domains instead of two, arranged in the 
manner of Fig. 8.   Bastien and Azou's curve of Fig. 2b is quite probably a 
traverse across the type "a" and "b" surfaces of Fig. 8. 

- 6 - 
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from one which increases with temperature to one that decreases with tempera- 

ture.   Such rates are found in super-cooled reactions such as the isothermal 

austenite-pear lite reaction at temperatures above the pearlite nose.   If this 

process renders the metal ductile, a ductility surface of type "c" results.   A 

type "d" surface results if the process is embrittling, since at constant strain 

rate an increase in temperature decreases the rate of the embrittling process 

and thus increases the ductility, i.e., 

while at constant temperature an increase in strain rate increases the ductility 

for the same reasons that it did in the case of the type "a" surface. 
i 

Undoubtedly there is significance in the fact that the two surfaces described 

by the present experimental results (types "a" and "d") if they are to be ration- 
i 

alized by competitive rate mechanisms, have one feature in common; in competi- 

tion with the strain rate is a rate of an embrittling process irrespective of 

whether the rate increases or decreases with temperature.   Since an embrittling 

process is common to both ductility surfaces, types "a" and "d", one suspects 

it is the same physical reaction in both cases. 

A physical reaction which increases in rate with increasing temperature at 
I 

low temperatures and decreases in rate with increasing temperature at high 
1 

temperatuVes is not uncommon in the general realm of kinetics.   The logarithm 

of the rate of such reactions when plotted against the reciprocal of the absolute 

temperature appears as "c" curves - exemplified by the rate of growth curve of 

pearlite, or scaling rate curves in surface oxidation studies. 

J 
The shape of these overall rate curves is usually the product of two main 

factors.   The first is a driving force (such as free energy) which is zero at an 

7 - i i 
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equilibrium temperature and which increases as reaction temperature is lowered 

from this point.    The second is a mobility factor (such as diffusion or conductivity) 

which is generally of the form 

-Q/RT 
D-DQe 

such that the upper arm of the "c" curve approaches the equilibrium temperature 

asymptotically as the overall rate goes to zero (or log rate goes to minum infinity), 

and the lower arm of the "c" curve asymptotically approaches a straight line 

whose slope approximates the slope of the log mobility factor vs reciprocal 

absolute temperature curve, i.e , - Q/R as temperature goes to zero. 

To obtain an approximation of the present overall rate curve, Fig. 9 plots the 

i 
temperature (on a reciprocal absolute temperature scale) at which the ductility 

of the charged steels returns to the ductility curve of the uncharged steels (points 

"a" in Figs. 5 and 6) as a function of strain rate (on a log scale).   One may assume 

that at these points there *s   some approximately fixed relationship between the 

strain rate and the rate of the embrittling reaction, so that the curve of Fig. 9 

is an indication of the shape of the overall rate curve of the embrittling reaction. 

There are two interesting reatures of the c-curve.   The upper arm of the 

1 

I 

curve asymptotically approaches a limiting temperature, and by analogy with the 

A} temperature of a pearlite curve, or the oxide dissociation temperature in a 

scaling rate curve.   This would represent an equilibrium temperature above which 

hydrogen has no embrittling effect on steels.   The authors know of no change in 

the physical state of iron-hydrogen alloys in this temperature range which would 

account for this behavior. 

The lower arm of the curve asymptotically approaches a sloping straight line. 

1 
Again from the classical pattern of such curves one would infer that the slope of 

-8- | 
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the line should approximate the slope of the diffusion coefficient of hydrogen 

in alpha iron.    The diffusion data (14) are meager and involve large extra- 

polations but a rough parallelism is nevertheless observed. 

It must be inferred from Fig. 9 that if a competitive rate mechanism is 

to explain hydrogen embrittlement, then the rate, b, of the embrittling, process 

must in some measure depend upon strain rate, for if 

t -   h (I) - iZ (b) 
then the minimum in the ductility curves would remain at a constant tempera- 

ture which is obviously not the case in Fig. 9. 

CONCLUSIONS 

1. Hydrogen depresses the ductility of mild steel within certain ranges of 

temperature and strain rate only. 

2. Within this brittle range, a plot of the ductility vs strain rate and tempera- 

ture reveals two domains, one at low temperatures in which 

» 
and another at high temperatures in which 

*l 1   v &     ^ O 

3.  The first of these domains represents a behavior in accord with any theory 

- such as Zapffe and Sims' (9) or Petch and Stables (4) - which basically 

hypothesises that the ductility of steels depends upon two competitive rates: 

the strain rate and a rate of the embrittling reaction which increases with 

increasing temperature, the steel being ductile if the former rate predominates, 

and brittle if the latter does. 

- 9 - 
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4. The second of these domains is not explained by theories of this type, 

nor by the assumption that the steels are degassing (though the authors 

feel that a third domain due to degassification of the steel in which 

4)<Oand      |T)>0 

does exist in certain temperature and strain rate ranges. 

5. If the general proposition of two competitive rates is to be applied to the 

second of these domains, the rate of the embrittling reaction must decrease 

with increasing temperature. 

6. An approximate curve of the logarithm of the rate of the embrittling reaction 

as a function of the reciprocal of the absolute temperature follows the classical 

pattern of rate curves of reactions that occur spontaneously below an equilibri- 

um temperature, i.e., a ••<•" curve. 

1 
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FRACTURE 
STRAIN 

FIG. 3 - A! POSSIBLE    CONSTRUCTION   OF   SHEETS   TYPE 
V   AND   V     DARK    LINES    INDICATE    KNOWN 
TRAVERSES. 
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FIG. 3 -B : POSSBLE    CONSTRUCTION   OF   SHEETS    TYPE 
V AND V.   DARK   LINES    INDICATE    KNOWN 
TRAVERSES. 
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STRAW 

FIG. 3 -C : POSSIBLE    CONSTRUCTION    OF   SHEETS   TYPE 
V  ANO   "d".   DARK   LINES    INDICATE    KNOWN 
TRAVERSES.    THIS   WAS   ACTUALLY    HOW 
HYDROGEN    EMBRITTLEMENT   WAS   OBSERVED 
TO    BEHAVE. 
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FIG. 4! FRACTURE   STRAIN   OF    SPHEROIWZED   SAE    1020 
STEEL   AS   A   FUNCTION    OF   CHARGING   TIME. 
NOTE   ACCELERATING   EFFECT   OF   POISON    IN 
ELECTROLYTE    ON   CURVES    AS    WELL   AS 
GENTLE    UPSWING    TO   CURVES    AT   LONG 
TIMES. ! 
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FIG. 6! FRACTURE STRAIN OF SPHEROIDIZED 1020 STEEL 
WITH AND WITHOUT HYDROGEN EMBRITTLEMENT 
AS A FUNCTION OF TEST TEMPERATURE AND 
STRAIN RATE. THE TWO CURVES JOIN AT 

»»» 
POINTS    A".   A   MiNMUM    IN    THE    CURVES    EXISTS 

ini AT    POINTS     B 
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FIG. 7!      FRACTURE     STRAIN       OF   SPHEROIDIZED 
SAE   1020   STEEL   WITH   8   WITHOUT   HYDROGEN 
EMBRITTLEMENT   AS   A   FUNCTION   OF   TEMPERATURE 
8   STRAIN    RATE . 
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FIG. 8 ! PROPOSED    FULL   CHARACTERIZATION    OF 
HYDROGEN    EMBRITTLEMENT. 
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FK3. 9 ! A PLOT   OF   TEMPERATURES   AT    WHICH 
DUCTILITY    OF   CHARGED   STEELS    RETURNS 
TO   THE   DUCTILITY   CURVE    OF    UN- 
CHARGED   STEELS   AS   A   FUNCTION    OF 
STRAIN    RATE.    THE   CIRCLES    PLOTTED 
HERE   ARE    THE    POINTS    "A"   OF    F!G.   6. 
POINTS    IN   PARENTHESES    ARE    EXTRAP- 
OLATED    FROM    FIG.   6.    THE   CROSSES 
ARE    THE    POINTS    "B"   OF   FIG   6, I.E. 
THE   TEMPERATURES    AND    STRAIN   RATES 
AT    WHICH   A   MINIMUM    IN    THE    DUC- 
TILITY   CURVES    OCCURRED.   THE    DIF- 
FUSION    COEFFICIENT   OF    HYDROGEN    IN 
ALPHA    IRON    IS    PLOTTED    TO   THE 
UPPER    SCALE. 
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